Raster Data Tutorial

Author: Bill Green (2002)
 HOME EMAIL
INTRODUCTION

A BMP computer image is the easiest to understand because it does not use compression, making pixel data retrieval much easier. The table below shows how the pixel data is stored from the first byte to the last.

	TABLE 1: BMP File Structure

	Byte # to fseek file pointer
	Information

	0
	Signature

	2
	File size

	18
	Width (number of columns)

	22
	Height (number of rows)

	28
	Bits/pixel

	46
	Number of colors used

	54
	Start of color table

	54 + 4*(number of colors)
	Start of raster data

	
	

The first 14 bytes are dedicated to the header information of the BMP. The next 40 bytes are dedicated towards the info header, where one can retrieve such characteristics as width, height, file size, and number of colors used. Next, is the color table, which is 4 x (number of colors used). So for an 8-bit grayscale image, the number of colors would be 28 or 256. And the color table would be 4 x 256 bytes long or 1024 bytes. And the last bit of data in a BMP file is the pixel data, or raster data. The raster data starts at byte 54 (header + info header) + 4 x number of colors (color table). For an 8-bit grayscale image, the raster data would start at byte 54 + 1024 = 1078. The size of the raster data is (width x height) – 1 bytes. Therefore, a 100 row by 100 column 8-bit grayscale image would have (100 x 100) – 1 = 9,999 bytes of raster data starting at byte 1078 and continuing to the end of the BMP.

In terms of image processing, the most important information is the following:
(1) Number of columns – byte #18
(2) Number of rows - byte #22
(3) Raster data – byte #(4 x number of colors) to byte #1078 + (number of columns x number of rows) – 1

In C, the most efficient way of declaring this important information is that of struct.

typedef struct { int rows;

 /* number of rows */

 int cols;

 /* number of columns */

 unsigned char* data; /* raster data */

} sImage;

READING BMP RASTER DATA
TEST.bmp is a 20 row by 20 column BMP image which we will use to read raster data from. In an 8 bit BMP image, black is 0 and white is 255. The top left corner of TEST.bmp starts at a pixel value of 0 (black) and progressively works its way down the diagonal to pixel value of 255 (white). Thinking of rows and columns in a BMP is not the same as thinking of rows and columns in a matrix. In a matrix row 0 and column 0 would start you at the top left corner of the matrix. However, in a BMP, the rows increase from bottom to top. Therefore, row 0 and column 0 in a BMP would correspond to the bottom left corner.

TEST.bmp contains 20 rows and 20 columns, so we know we will have 400 bytes of raster data. We also know the raster data will start at byte #(54 + 4 x number of colors). The number of colors of TEST.bmp is 256 because it is a grayscale image with colors ranging from 0 to 255. Therefore, the raster data will start at byte #1078 and the file size will be 1078 + 400 = 1478 bytes. Knowing this, let’s try our first program to read raster data and print it to a text file.

To be compiled with Turbo C
Note: download raster.zip rather than cutting and pasting from below.

#include (stdio.h)

#include (stdlib.h)

#include (math.h)

/*-------STRUCTURES---------*/

typedef struct {int rows; int cols; unsigned char* data;} sImage;

/*-------PROTOTYPES---------*/

long getImageInfo(FILE*, long, int);

int main(int argc, char* argv[])

{

 FILE

*bmpInput, *rasterOutput;

 sImage

originalImage;

 unsigned char

someChar;

 unsigned char*
pChar;

 int

nColors; /* BMP number of colors */

 long

fileSize; /* BMP file size */

 int

vectorSize; /* BMP vector size */

 int

r, c; /* r = rows, c = cols */

 /* initialize pointer */

 someChar = '0';

 pChar = &someChar;

 if(argc < 2)

 {

 printf("Usage: %s bmpInput.bmp\n", argv[0]);

 exit(0);

 }

 printf("Reading filename %s\n", argv[1]);

 /*--------READ INPUT FILE------------*/

 bmpInput = fopen(argv[1], "rb");

 fseek(bmpInput, 0L, SEEK_END);

 /*--------DECLARE OUTPUT TEXT FILE--------*/

 rasterOutput = fopen("data.txt", "w");

 /*--------GET BMP DATA---------------*/

 originalImage.cols = (int)getImageInfo(bmpInput, 18, 4);

 originalImage.rows = (int)getImageInfo(bmpInput, 22, 4);

 fileSize = getImageInfo(bmpInput, 2, 4);

 nColors = getImageInfo(bmpInput, 46, 4);

 vectorSize = fileSize - (14 + 40 + 4*nColors);

 /*-------PRINT DATA TO SCREEN-------------*/

 printf("Width: %d\n", originalImage.cols);

 printf("Height: %d\n", originalImage.rows);

 printf("File size: %ld\n", fileSize);

 printf("# Colors: %d\n", nColors);

 printf("Vector size: %d\n", vectorSize);

 /*----START AT BEGINNING OF RASTER DATA-----*/

 fseek(bmpInput, (54 + 4*nColors), SEEK_SET);

 /*----------READ RASTER DATA----------*/

 for(r=0; r<=originalImage.rows - 1; r++)

 {

 for(c=0; c<=originalImage.cols - 1; c++)

 {

 /*-----read data and print in (row,column) form----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 fprintf(rasterOutput, "(%d, %d) = %d\n", r, c, *pChar);

 }

 }

 fclose(bmpInput);

 fclose(rasterOutput);

}

/*----------GET IMAGE INFO SUBPROGRAM--------------*/

long getImageInfo(FILE* inputFile, long offset, int numberOfChars)

{

 unsigned char

*ptrC;

 long

value = 0L;

 unsigned char

dummy;

 int

i;

 dummy = '0';

 ptrC = &dummy;

 fseek(inputFile, offset, SEEK_SET);

 for(i=1; i<=numberOfChars; i++)

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 /* calculate value based on adding bytes */

 value = (long)(value + (*ptrC)*(pow(256, (i-1))));

 }

 return(value);

} /* end of getImageInfo */

Running your raster data program, you will get an ASCII file called data.txt with some entries looking like the following:

(0, 0) = 255

(0, 1) = 255

(0, 2) = 255

(0, 3) = 255

 :

(1, 0) = 255

(1, 1) = 255

(1, 2) = 255

(1, 3) = 255

 :

(2, 0) = 255

(2, 1) = 255

(2, 2) = 255

(2, 3) = 255

 :

(3, 0) = 255

(3, 1) = 255

(3, 2) = 255

(3, 3) = 255

 :

(4, 0) = 255

(4, 1) = 255

(4, 2) = 255

 :

(4, 14) = 207

(4, 15) = 207

(4, 16) = 255

(4, 17) = 255

(4, 18) = 255

(4, 19) = 255

 :

(5, 0) = 255

(5, 1) = 255

(5, 2) = 255

(5, 3) = 255

 :

(5, 14) = 207

(5, 15) = 207

 :

(6, 0) = 255

(6, 1) = 255

(6, 2) = 255

(6, 3) = 255

 :

(6, 12) = 159

(6, 13) = 159

 :

(7, 0) = 255

(7, 1) = 255

(7, 2) = 255

(7, 3) = 255

 :

(7, 12) = 159

(7, 13) = 159

(7, 14) = 255

 :

(8, 0) = 255

(8, 1) = 255

(8, 2) = 255

 :

(8, 10) = 111

(8, 11) = 111

(8, 12) = 255

 :

(9, 0) = 255

(9, 1) = 255

(9, 2) = 255

(9, 3) = 255

 :

(9, 10) = 111

(9, 11) = 111

(9, 12) = 255

 :

(10, 0) = 255

(10, 1) = 255

(10, 2) = 255

(10, 3) = 255

 :

(10, 8) = 79

(10, 9) = 79

(10, 10) = 255

 :

EXPLANATION
Notice how entry (4, 14) is 207 meaning that the pixel in the row 4, column 14 is very close to white. This is not the case if you are thinking in terms of matrices. Just remember that in BMPs, the raster data is stored from left to right and bottom to top.

The program begins by opening the BMP file entered at the command prompt. For example if your program is called raster.c, at the command prompt you would enter:

raster test.bmp

We want to read a binary BMP file which required us to add “rb” in our fopen statement for read binary. We also have to set the file pointer to the beginning of the BMP file – byte #0. We accomplish these 2 tasks with the following lines of code:

bmpInput = fopen(argv[1], "rb");

fseek(bmpInput, 0L, SEEK_END);

From the pixel data table we see that byte #18 contains the width of the BMP file. So to get the corresponding number of columns we have to set the file pointer to byte number 18. We also have to set the pointer to read the height, number of colors, file size, vector size, etc. Instead of tediously performing this task repeatedly, it would be much easier to write a subprogram that does it for you each time it is called in main. The subprogram is a function which means it returns a value to main. For example, to get the width of a BMP, all you would have to type is:

originalImage.rows = (int) getImageInfo(bmpInput, 18, 4);

The 18 corresponds to where you want to start reading data from and the 4 corresponds to how many bytes you want to read.

MANIPULATING A BMP FILE
As our first image processing task, we want to take the TEST.bmp and reflect it. In other words, instead of having decrease from black to white down the diagonal, we want it to decrease from white to black. If the pixel value was black, we want it to be white.

reflect(k, k) = 255 – TEST(k, k)

Aside from this simple algorithm, reflect.bmp and TEST.bmp are identical, so we would like to copy the header information and the color table from TEST.bmp to reflect.bmp. This can be done with the following 2 procedures. A procedure is a subprogram that does not return a value.

/*-------------COPIES HEADER AND INFO HEADER----------------*/

void copyImageInfo(FILE* inputFile, FILE* outputFile)

{

 unsigned char

*ptrC;

 unsigned char

dummy;

 int

i;

 dummy = ‘0’;

 ptrC = &dummy;

 fseek(inputFile, 0L, SEEK_SET);

 fseek(outputFile, 0L, SEEK_SET);

 for(i=0; i<=50; i++)

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 fwrite(ptrC, sizeof(char), 1, outputFile);

 }

}

/*----------------COPIES COLOR TABLE-----------------------------*/

void copyColorTable(FILE* inputFile, FILE* outputFile, int nColors)

{

 unsigned char

*ptrC;

 unsigned char

dummy;

 int

i;

 dummy = ‘0’;

 ptrC = &dummy;

 fseek(inputFile, 54L, SEEK_SET);

 fseek(outputFile, 54L, SEEK_SET);

 for(i=0; i<=(4*nColors); i++) /* there are (4*nColors) bytesin color table */

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 fwrite(ptrC, sizeof(char), 1, outputFile);

 }

}

The following code reflects a BMP file. The differences from raster.c are in red:

To be compiled with Turbo C
Note: download reflect.zip rather than cutting and pasting from below.

#include (stdio.h)

#include (stdlib.h)

#include (math.h)

/*-------STRUCTURES---------*/

typedef struct {int rows; int cols; unsigned char* data;} sImage;

/*-------PROTOTYPES---------*/

long getImageInfo(FILE*, long, int);

void copyImageInfo(FILE* inputFile, FILE* outputFile);

void copyColorTable(FILE* inputFile, FILE* outputFile, int nColors);

int main(int argc, char* argv[])

{

 FILE

*bmpInput, *bmpOutput;
 sImage

originalImage;

 unsigned char

someChar;

 unsigned char*
pChar;

 int

nColors; /* BMP number of colors */

 long

fileSize; /* BMP file size */

 int

vectorSize; /* BMP vector size */

 int

r, c; /* r = rows, c = cols */

 /* initialize pointer */

 someChar = '0';

 pChar = &someChar;

 if(argc < 2)

 {

 printf("Usage: %s bmpInput.bmp\n", argv[0]);

 exit(0);

 }

 printf("Reading filename %s\n", argv[1]);

 /*--------READ INPUT FILE------------*/

 bmpInput = fopen(argv[1], "rb");

 fseek(bmpInput, 0L, SEEK_END);

 /*--------DECLARE OUTPUT FILE--------*/

 bmpOutput = fopen("reflect.bmp", "wb");
 /*--------GET BMP DATA---------------*/

 originalImage.cols = (int)getImageInfo(bmpInput, 18, 4);

 originalImage.rows = (int)getImageInfo(bmpInput, 22, 4);

 fileSize = getImageInfo(bmpInput, 2, 4);

 nColors = getImageInfo(bmpInput, 46, 4);

 vectorSize = fileSize - (14 + 40 + 4*nColors);

 /*-------PRINT DATA TO SCREEN-------------*/

 printf("Width: %d\n", originalImage.cols);

 printf("Height: %d\n", originalImage.rows);

 printf("File size: %ld\n", fileSize);

 printf("# Colors: %d\n", nColors);

 printf("Vector size: %d\n", vectorSize);

 copyImageInfo(bmpInput, bmpOutput);

 copyColorTable(bmpInput, bmpOutput, nColors);
 /*----START AT BEGINNING OF RASTER DATA-----*/

 fseek(bmpInput, (54 + 4*nColors), SEEK_SET);

 /*----------READ RASTER DATA----------*/

 for(r=0; r<=originalImage.rows - 1; r++)

 {

 for(c=0; c<=originalImage.cols - 1; c++)

 {

 /*-----read data, reflect and write to output file----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 if(*pChar == 255) *pChar = 255;

 else *pChar = 255 - *pChar;

 fwrite(pChar, sizeof(char), 1, bmpOutput);
 }

 }

 fclose(bmpInput);

 fclose(bmpOutput);
}

/*----------GET IMAGE INFO SUBPROGRAM--------------*/

long getImageInfo(FILE* inputFile, long offset, int numberOfChars)

{

 unsigned char

*ptrC;

 long

value = 0L;

 unsigned char

dummy;

 int

i;

 dummy = '0';

 ptrC = &dummy;

 fseek(inputFile, offset, SEEK_SET);

 for(i=1; i<=numberOfChars; i++)

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 /* calculate value based on adding bytes */

 value = (long)(value + (*ptrC)*(pow(256, (i-1))));

 }

 return(value);

} /* end of getImageInfo */

/*-------------COPIES HEADER AND INFO HEADER----------------*/

void copyImageInfo(FILE* inputFile, FILE* outputFile)

{

 unsigned char

*ptrC;

 unsigned char

dummy;

 int

i;

 dummy = '0';

 ptrC = &dummy;

 fseek(inputFile, 0L, SEEK_SET);

 fseek(outputFile, 0L, SEEK_SET);

 for(i=0; i<=50; i++)

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 fwrite(ptrC, sizeof(char), 1, outputFile);

 }

}

/*----------------COPIES COLOR TABLE-----------------------------*/

void copyColorTable(FILE* inputFile, FILE* outputFile, int nColors)

{

 unsigned char

*ptrC;

 unsigned char

dummy;

 int

i;

 dummy = '0';

 ptrC = &dummy;

 fseek(inputFile, 54L, SEEK_SET);

 fseek(outputFile, 54L, SEEK_SET);

 for(i=0; i<=(4*nColors); i++) /* there are (4*nColors) bytesin color table */

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 fwrite(ptrC, sizeof(char), 1, outputFile);

 }

}

You are visitor number:

Raster Data Tutorial (24-Bit)

Author: Bill Green (2002)
HOME EMAIL
This tutorial assumes the reader knows:
(1) Data is stored left to right and bottom to top in a BMP.
(2) How to develop source code to read BMP header and info header (i.e. width, height & # of colors).
(3) How to develop source code to read raster data
INTRODUCTION

There are a possible 256 colors (2^8) that can be stored in a 8-bit image with 255 being the maximum. Likewise, a 24-bit true color BMP has a possible 16 million colors (2^24). In a 24-bit BMP image, a pixel represents a RGB (Red Green Blue) data value. The pixel's RGB data value shows how much Red, Green and Blue are in that particular pixel. One pixel has 3 8-bit colors in it each having an intensity value between 0-255. So a pixel with a data value of (255, 0, 0) is equivalent to (Red=255, Green=0, and Blue=0), or Red! And the composite of the RGB color values produces that pixels actual color. As another example, we know that red and green make yellow. Therefore we would need all red, all green and no blue. Being 255 is the maximum for each color, you would need an RGB data value of (255, 255, 0) to achieve an accurate representation of yellow.

A 24-Bit BMP file structure is slightly different than an 8-Bit BMP file structure. There is no color table for any BMP with a bits/pixel value > 8. The table below shows how the pixel data is stored from the first byte to the last in a 24-Bit BMP.

	TABLE 1: 24-Bit BMP File Structure

	Byte # to fseek file pointer
	Information

	0
	Signature

	2
	File size

	18
	Width (number of columns)

	22
	Height (number of rows)

	28
	Bits/pixel

	46
	Number of colors used

	54
	Start of raster data in a 24-Bit BMP

	
	

The raster data starts at byte 54. The size of the raster data is (width x height) – 1 bytes. Therefore, a 100 row by 100 column 24-bit image would have (100 x 100) – 1 = 9,999 bytes of raster data starting at byte 54 and continuing to the end of the BMP.

READING 24-Bit BMP RASTER DATA
TEST24.bmp is a 20 row by 20 column BMP image which we will use to read raster data from. The top left portion of TEST24.bmp is yellow and has an RGB pixel value of (255, 255, 0). The bottom right portion is black with an RGB value of (0, 0, 0). The top right portion is green with an RGB value of (0, 255, 0), and the remainder of TEST24.bmp is white (255, 255, 255).

[image: image2]

(TEST24.bmp is scaled up here to a 100 by 100 BMP,
so be sure and download the zip file to test out your raster data program.)

TEST24.bmp contains 20 rows and 20 columns, so we know we will have 400 bytes of raster data. We also know the raster data will start at byte #54. Knowing this, let’s try our first program to read raster data and print it to a text file.

To be compiled with Turbo C
Note: download raster24.zip rather than cutting and pasting from below.

#include (stdio.h)

#include (stdlib.h)

#include (math.h)

long getImageInfo(FILE*, long, int);

typedef struct {int rows; int cols; unsigned char* data;} sImage;

int main(int argc, char* argv[])

{

 FILE

*bmpInput, *rasterOutput;

 sImage

originalImage;

 unsigned char

someChar;

 unsigned char

*pChar;

 long

fileSize;

 int

vectorSize, nColors;

 int

r, c;

 /*--------INITIALIZE POINTER----------*/

 someChar = '0';

 pChar = &someChar;

 if(argc < 2)

 {

 printf("Usage: %s bmpInput.bmp\n", argv[0]);

 exit(0);

 }

 printf("Reading file %s\n", argv[1]);

 /*----DECLARE INPUT AND OUTPUT FILES----*/

 bmpInput = fopen(argv[1], "rb");

 rasterOutput = fopen("data24.txt", "w");

 fseek(bmpInput, 0L, SEEK_END);

 /*-----GET BMP INFO-----*/

 originalImage.cols = (int)getImageInfo(bmpInput, 18, 4);

 originalImage.rows = (int)getImageInfo(bmpInput, 22, 4);

 fileSize = getImageInfo(bmpInput, 2, 4);

 nColors = getImageInfo(bmpInput, 46, 4);

 /*----PRINT BMP INFO TO SCREEN-----*/

 printf("Width: %d\n", originalImage.cols);

 printf("Height: %d\n", originalImage.rows);

 printf("File size: %ld\n", fileSize);

 printf("Bits/pixel: %d\n", getImageInfo(bmpInput, 28, 4));

 printf("No. colors: %d\n", nColors);

 /*----FOR 24-BIT BMP, THERE IS NO COLOR TABLE-----*/

 fseek(bmpInput, 54, SEEK_SET);

 /*-----------READ RASTER DATA-----------*/

 for(r=0; r<=originalImage.rows-1; r++)

 {

 for(c=0; c<=originalImage.cols-1; c++)

 {

 /*----READ FIRST BYTE TO GET BLUE VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 blueValue = *pChar;

 /*-----READ NEXT BYTE TO GET GREEN VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 greenValue = *pChar;

 /*-----READ NEXT BYTE TO GET RED VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 redValue = *pChar;

 /*---------PRINT TO TEXT FILE---------*/

 fprintf(rasterOutput, "(%d %d) = \tRed \t%d", r, c, redValue);

 fprintf(rasterOutput, "\tGreen \t%d \tBlue \t%d\n", greenValue, blueValue);

 }

 }

 fclose(bmpInput);

 fclose(rasterOutput);

 return 0;

}

/*--------SUBPROGRAMS------------*/

long getImageInfo(FILE* inputFile, long offset, int numberOfChars)

{

 unsigned char

*ptrC;

 long

value=0L;

 int

i;

 unsigned char

dummy;

 dummy = '0';

 ptrC = &dummy;

 fseek(inputFile, offset, SEEK_SET);

 for(i=1; i<=numberOfChars; i++)

 {

 fread(ptrC, sizeof(char), 1, inputFile);

 /* calculate value based on adding bytes */

 value = (long)(value + (*ptrC)*(pow(256, (i-1))));

 }

 return(value);

}

Running your raster data program, you will get an ASCII file called data24.txt with some entries looking like the following:

(0 0) =
Red
255
Green
255
Blue
255

(0 1) =
Red
255
Green
255
Blue
255

(0 2) =
Red
255
Green
255
Blue
255

(0 3) =
Red
255
Green
255
Blue
255

(0 4) =
Red
255
Green
255
Blue
255

(0 5) =
Red
255
Green
255
Blue
255

(0 6) =
Red
255
Green
255
Blue
255

(0 7) =
Red
255
Green
255
Blue
255

(0 8) =
Red
255
Green
255
Blue
255

(0 9) =
Red
255
Green
255
Blue
255

(0 10) =
Red
255
Green
255
Blue
255

(0 11) =
Red
255
Green
255
Blue
255

(0 12) =
Red
0
Green
0
Blue
0

(0 13) =
Red
0
Green
0
Blue
0

(0 14) =
Red
0
Green
0
Blue
0

(0 15) =
Red
0
Green
0
Blue
0

(0 16) =
Red
0
Green
0
Blue
0

(0 17) =
Red
0
Green
0
Blue
0

(0 18) =
Red
0
Green
0
Blue
0

(0 19) =
Red
0
Green
0
Blue
0

:

(8 0) =
Red
255
Green
255
Blue
0

(8 1) =
Red
255
Green
255
Blue
0

(8 2) =
Red
255
Green
255
Blue
0

(8 3) =
Red
255
Green
255
Blue
0

(8 4) =
Red
255
Green
255
Blue
0

(8 5) =
Red
255
Green
255
Blue
0

(8 6) =
Red
255
Green
255
Blue
0

(8 7) =
Red
255
Green
255
Blue
0

(8 8) =
Red
255
Green
255
Blue
0

(8 9) =
Red
255
Green
255
Blue
0

(8 10) =
Red
255
Green
255
Blue
0

(8 11) =
Red
255
Green
255
Blue
0

(8 12) =
Red
255
Green
255
Blue
255

(8 13) =
Red
255
Green
255
Blue
255

(8 14) =
Red
255
Green
255
Blue
255

(8 15) =
Red
255
Green
255
Blue
255

(8 16) =
Red
255
Green
255
Blue
255

(8 17) =
Red
255
Green
255
Blue
255

(8 18) =
Red
255
Green
255
Blue
255

(8 19) =
Red
255
Green
255
Blue
255

:

(16 0) =
Red
255
Green
255
Blue
0

(16 1) =
Red
255
Green
255
Blue
0

(16 2) =
Red
255
Green
255
Blue
0

(16 3) =
Red
255
Green
255
Blue
0

(16 4) =
Red
255
Green
255
Blue
0

(16 5) =
Red
255
Green
255
Blue
0

(16 6) =
Red
255
Green
255
Blue
0

(16 7) =
Red
255
Green
255
Blue
0

(16 8) =
Red
255
Green
255
Blue
0

(16 9) =
Red
255
Green
255
Blue
0

(16 10) =
Red
255
Green
255
Blue
0

(16 11) =
Red
255
Green
255
Blue
0

(16 12) =
Red
255
Green
255
Blue
255

(16 13) =
Red
255
Green
255
Blue
255

(16 14) =
Red
0
Green
255
Blue
0

(16 15) =
Red
0
Green
255
Blue
0

(16 16) =
Red
0
Green
255
Blue
0

(16 17) =
Red
0
Green
255
Blue
0

(16 18) =
Red
0
Green
255
Blue
0

(16 19) =
Red
0
Green
255
Blue
0

:

Notice how entry (16, 0) is (Red = 255, Green = 255, Blue = 0) corresponding to a yellow pixel in TEST24.bmp. And we can see that looking at TEST24.bmp, it matches precisilely. Just remember that in BMPs, the raster data is stored from left to right and bottom to top - so row 16, column 0 is somewhere in the the top left corner!

EXPLANATION
To get preliminary code explanation, please see my raster data tutorial. The difference between this code and my 8-Bit raster code is that instead of 1 byte representing a pixel (8-bit), we now have 3 bytes representing each pixel (24-bit). So we cannot read the value of the pixel intensity and then move on to the next row-column entry. We have to read 3 different bytes! The algorithm below was used to do this:

 /*----READ FIRST BYTE TO GET BLUE VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 blueValue = *pChar;

 /*-----READ NEXT BYTE TO GET GREEN VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 greenValue = *pChar;

 /*-----READ NEXT BYTE TO GET RED VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 redValue = *pChar;

 /*---------PRINT TO TEXT FILE---------*/

 fprintf(rasterOutput, "(%d %d) = \tRed \t%d", r, c, redValue);

 fprintf(rasterOutput, "\tGreen \t%d \tBlue \t%d\n", greenValue, blueValue);

CONVERTING A 24-BIT BMP TO GRAY SCALE
We want to take the TEST24.bmp and grayscale it, or convert it from a 24-bit to an 8-bit BMP. We'll call our new grayscaled BMP "gray24.bmp". A formula for converting a RGB pixel value to a grayscale value is shown below:

grayValue = 0.299*redValue + 0.587*greenValue + 0.114*blueValue

First, I copied the header and info header from the input BMP to the output BMP. This process is described in my raster data tutorial. They are the same with the exception of the file size, bits/pixel value, and the number of colors. We manipulate them by using the following code

 /*----CHANGE BIT DEPTH FROM 24 TO 8----*/

 fseek(bmpOutput, 28, SEEK_SET);

 *pLong = (unsigned long)(8);

 fwrite(pLong, sizeof(unsigned long), 1, bmpOutput);

The color tables, however, are not identical. There is no color table in a 24-bit BMP (see above), while there is one in a grayscale image. Therefore, instead of copying the color table like we have been, we are actually going to have to create one. I did this by just copying the color table of another grayscale BMP.

createColorTable(grayBmpInput, bmpOutput);

The following portion of code converts a 24-Bit BMP file to grayscale. The differences from raster24.c are in red.

To be compiled with Turbo C
Note: download gray24.zip rather than cutting and pasting from below.

 /*-----READ FIRST BYTE TO GET BLUE VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 blueValue = *pChar;

 /*-----READ NEXT BYTE TO GET GREEN VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 greenValue = *pChar;

 /*-----READ NEXT BYTE TO GET RED VALUE-----*/

 fread(pChar, sizeof(char), 1, bmpInput);

 redValue = *pChar;

 /*-----USE FORMULA TO CONVERT RGB VALUE TO GRAYSCALE-----*/

 grayValue = (int)(0.299*redValue + 0.587*greenValue + 0.114*blueValue);
 /*-----PRINT TO TEXT FILE-----*/

 fprintf(rasterOutput, "(%d %d) = \tRed \t%d", r, c, redValue);

 fprintf(rasterOutput, "\tGreen \t%d \tBlue \t%d \tGray \t%d\n", greenValue, blueValue, grayValue);

 /*-----WRITE TO NEW BMP FILE------*/

 *pChar = grayValue;

 fseek(bmpOutput, (54 + 4*256), SEEK_SET);

 fwrite(pChar, sizeof(char), 1, bmpOutput);
You are visitor number:

